If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-137=0
a = 1; b = 4; c = -137;
Δ = b2-4ac
Δ = 42-4·1·(-137)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{141}}{2*1}=\frac{-4-2\sqrt{141}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{141}}{2*1}=\frac{-4+2\sqrt{141}}{2} $
| x^2+4x=137 | | –2x+8=14 | | 17=x−29 | | 14=2c-6 | | 28=7+3(x-8) | | A(t)=900(0.8752)t. | | 8b+b=9 | | z−1/9=18/9 | | y+3.8=8.7 | | n+75=90. | | −2x^2+20x=42 | | 31.3=b/7 | | 31.3=b7 | | (1/3)x-9=-12 | | x-18=2-3 | | y8+19=309688311 | | 36x+28=20x+30 | | X+7=90+6x-8 | | 65x+20=25x+30 | | 3x-9x=-6 | | X2-5x+6=20 | | 12x×5=101 | | x-22.5=29 | | 70x+25=100x+22 | | (4/9)x-3=7 | | -5+1/2=(5x+13) | | 8.71+x=8.1 | | 2.6x+1.6=14.6 | | 2x+7=109 | | 2x+7=218 | | 8x+70=2x+160 | | 5x-2x+5x-9=2x |